Thursday, August 28, 2025

                                                                                                 Y

8

37

78

29

70

21

62

13

54

5

7

6

38

79

30

71

22

63

14

46

6

47

7

39

80

31

72

23

55

15

5

16

48

8

40

81

32

64

24

56

4

57

17

49

9

41

73

33

65

25

3

26

58

18

50

1

42

74

34

66

2

67

27

59

10

51

2

43

75

35

1

36

68

19

60

11

52

3

44

76

0

77

28

69

20

61

12

53

4

45

 

0

1

2

3

4

5

6

7

8

       Magic Squares and Labyrinth seed Forms                                                                                                                                                                                                                                  

In the Bridges 2025 workshop, we were given a method of     constructing an odd order magic square and shown its relationship to a labyrinth seed form.  We used the example of a 9 x 9 square.  We were left with the question of why the magic square and labyrinth were so related.  I will not address that question here.                                  

 What I will do is give a formula for the entries in the magic square. We number the rows from bottom to top, 0 to 8, and the columns, left to right, 0 to 8, and regard the rows and columns and diagonals as wrapping around (so as to make a torus). One successively enters into the cells all the numbers from I to 81, beginning at the cell directly below the centre cell and proceeding along the diagonal that                                                                                                             X

slopes down to the right, until it fills in all 9 cells of the diagonal,  and then one moves down two cells, and continues along that diagonal, and so on, yielding the magic square at the right.                                      

Let f (x , y) be the entry in the cell, (x, y).

Let MOD (A, B) be the remainder when A is divided by B.

f (x. x + 1) = MOD (36 – 9 x, 81)          (with some abuse of notation, cell (4, 5) is taken to be 81 instead of 0)

Beginning at cell (x, x + 1), and moving up column x, two cells at a time reduces the entry each time by 10 Mod 81. Thus, 

f (x, x + 1 + 2k) = MOD (36 – 9x – 10 k, 81)

Setting y = MOD (x + 1 + 2k, 9) and solving for k, yields:

 f (x, y) = MOD (36 - 9x – 10 * MOD (5(y – x – 1), 9), 81).

One can easily generalize this magic square construction and this formula to any odd order square.  There are many interesting patterns in this array of numbers.

Martin Levin

mdlevin_public@msn.com

 

                                                                                                                                               

 

 

 

 

                                                                      

 

    

 

 

       

 

 

 

 

 

 

 

 


 

 

 

 

 

1 comment: